ПОЧЕМУ НАМ НЕ ПРОЖИТЬ БЕЗ НОЛЯ

Математик Ханна Фрай рассказывает захватывающую историю открытия числа ноль и объясняет, почему без него мы не смогли бы предсказывать будущее.

Untitled-13В основе науки, техники и математики лежит ничто – вернее, ноль.
Это дерзкая и влиятельная цифра вызвала больше споров и восторгов, чем любой другой известный математический знак.
Ноль как понятие встречается с древних времен – его можно найти в памятниках культуры вавилонян и майя, использовавших эту цифру для расчета календаря.
Древние ученые пользовались им для обозначения отсутствия числа, как это делаем мы в числах наподобие 101 или 102, чтобы показать, что в разряде десятков нет числа, кратного 10. Вавилоняне же для этого использовали два клиновидных знака.
Тем не менее прошло целых два тысячелетия, прежде чем ноль, при всей его математической значимости, стали воспринимать как настоящее число.
Случилось это в Индии, которая по словам английского писателя-математика Алекса Беллоса, была для этого идеальным местом.
«Глубоко в индийской культуре заложена идея о том, что ничто – это на самом деле что-то, – говорит он. – Если есть «нирвана», то есть состояние небытия, отсутствия тревог и желаний, то почему бы не придумать символ для обозначения «ничего?».
Этот символ получил название «шунья», и сегодня это слово используется для обозначения и понятия «ничто», и нуля как числа.
Несмотря на то, что форма всех других цифр, используемых нами сегодня, существенно изменилась за время их существования, ноль всегда обозначали окружностью.
Согласно индийской мифологии, ноль круглый, потому что символизирует жизненный цикл, или, как его еще называют, «змею вечности».
В становлении ноля важную роль сыграл индийский астроном Брахмагупта, живший в 7 веке н.э. В математике шунья использовалась не только для обозначения отсутствия числа в какой-либо позиции, но и для расчетов, как и любое другое число.
Его можно было прибавлять и отнимать, а также умножать на него.
Что касается деления на ноль, этот вопрос остается довольно сложным, но именно эта сложность способствовала возникновению совершенно нового замечательного раздела математики.
Закрепив свое присутствие в Южной Азии, ноль отправился на Ближний Восток, где был взят на вооружение исламскими учеными, сделавшими его частью используемой нами сегодня арабской системы счисления.
Тем не менее после столь блестящего в духовном и интеллектуальном смысле начала нолю пришлось очень непросто.
Он попал в Европу во времена христианских крестовых походов против ислама. Любые идеи арабов, даже в математике, встречались с неизменным скептицизмом и недоверием.
В 1299 году ноль, равно как и все остальные арабские цифры, был запрещен во Флоренции. Произошло это потому, что ноль считали находкой для мошенников.
Его легко было исправить на девять или, например, добавить пару нолей к сумме расписки, чтобы увеличить сумму долга.
Более того, считалось, что ноль создает опасный прецедент, ведь само его существование предполагает существование отрицательных чисел, что, в свою очередь, ведет к признанию таких понятий как долг и заимодавство.
Невероятно, но факт: ноль, как и другие арабские цифры, получил окончательное признание лишь в XV веке.
Для сравнения приведем простой пример: к тому времени Оксфордский университет в Англии существовал уже несколько веков, а в Европе вовсю развивалось книгопечатание. Без сомнения, и то, и другое помогло такому понятию, как ноль, навсегда закрепиться в математике. Именно благодаря ему были созданы самые удивительные научные и технологические методы, которыми мы пользуемся сегодня.
Настоящий триумф этой цифры пришелся на XVII век, когда она стала основой для системы координат, изобретенной французским философом Декартом (все мы помним графики с осями x and y, которые рисовали в школе).
Его система до сих пор используется в различных областях науки, от техники до компьютерной графики.
В эпоху Возрождения ноль приобрел такой большой вес, что вновь стал причиной разногласий.
Математический анализ – это математика изменений. Благодаря ему у нас есть хитрые приемы, позволяющие предугадать то, что случится в будущем – от темпов распространения вируса Эбола до колебаний на рынке ценных бумаг. Это и вправду очень мощный инструмент.
Математический анализ можно использовать для описания практически любых изменений и он основан на понятии ноля.
Математический анализ можно использовать для описания практически любых изменений, от колебаний курсов акций до усваивания лекарственного препарата в организме человека.
Без понятия ноля как числа это было бы невозможно.
Поэтому давайте поднимем бокал с идеально сферическими пузырьками за самое округлое и всесильное число в истории!

Ханна Фрай

Leave a Reply

Your email address will not be published. Required fields are marked *